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a b s t r a c t

Freeze-drying or lyophilisation is a batch wise industrial process used to remove water from solutions,
hence stabilizing the solutes for distribution and storage. The objective of the present work was to outline
a batch modelling approach to monitor a freeze-drying process in-line and in real-time using Raman
spectroscopy. A 5% (w/v) d-mannitol solution was freeze-dried in this study as model. The monitoring
of a freeze-drying process using Raman spectroscopy allows following the product behaviour and some
process evolution aspects by detecting the changes of the solutes and solvent occurring during the process.
Herewith, real-time solid-state characterization of the final product is also possible.

The timely spectroscopic measurements allowed the differentiation between batches operated in nor-
mal process conditions and batches having deviations from the normal trajectory. Two strategies were
rocess analytical technology
ulti-way analysis

LS
ARAFAC

employed to develop batch models: partial least squares (PLS) using the unfolded data and parallel factor
analysis (PARAFAC). It was shown that both strategies were able to developed batch models using in-
line Raman spectroscopy, allowing to monitor the evolution in real-time of new batches. However, the
computational effort required to develop the PLS model and to evaluate new batches using this model
is significant lower compared to the PARAFAC model. Moreover, PLS scores in the time mode can be
computed for new batches, while using PARAFAC only the batch mode scores can be determined for new

batches.

. Introduction

Freeze-drying, also called lyophilisation, is a three stages dry-
ng process used to convert solutions of (heat-)labile materials into
olids of sufficient stability for distribution and storage [1]. The ini-
ial stage is a freezing step in which water is converted into ice,
nd the solutes are crystallized or transformed into an amorphous
ystem. The shelf temperature in the freezing state is set to ensure
hat the product is cooled bellow the glass transition temperature.
he second stage is a primary drying step in which the ice is subli-
ated under vacuum. The temperature during the primary drying

s increased (but kept under the collapse temperature) to supply
nergy for ice sublimation. The process ends with a secondary
rying step in which all the unfrozen water is removed by desorp-

ion and/or in which hydrate water is removed [2]. Freeze-drying
s a widely used process for the preservation of microorganisms,
ood items, biological products and pharmaceuticals [3–6]. In the
harmaceutical industry, the process provides improved stability,

∗ Corresponding author. Tel.: +351 222078994; fax: +351 222078961.
E-mail address: joaolopes@ff.up.pt (J.A. Lopes).

039-9140/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.talanta.2010.08.051
© 2010 Elsevier B.V. All rights reserved.

and/or desired physicochemical properties, such as enhance disso-
lution rates and bioavailability [6,7].

Real-time monitoring of freeze-drying processes is essential to
reduce costs and to improve process knowledge and efficiency.
Freeze-drying cycles are in many cases set up by trial and error,
herewith only focussing on the final product quality [8]. During the
last decades, several methods based on product temperature and
pressure measurements were developed to monitor freeze-drying
processes [7–9]. However, these methods do not allow the in-line
monitoring of all critical process aspects (e.g., product behaviour).

In recent years, several methods based on the concept of process
analytical technology (PAT) have emerged in the pharmaceutical
industry, the majority of them using spectroscopic techniques [10].
Spectroscopic tools have several advantages over other analytical
methods such as high performance liquid chromatography (HPLC):
they can be non-invasive and non-destructive and can be used in-
line hence providing real-time information. The application of near

infrared spectroscopy (NIRS) and Raman spectroscopy does not
only supply information about the chemical and physical properties
of the final product (e.g., physical state, polymorphism), but also
about the chemical and physical changes occurring over time. In
previous studies, Raman spectroscopy and NIRS [2,3,9,11,12] were
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first impression on the new batches. If the sum of squares of the
residuals values are higher than the value for the 95% confidence
M.C. Sarraguça et al. /

valuated as potential tools for the in-line and real-time monitoring
f freeze-drying processes. Using these methods, the determination
f some process stage end-points as well as the chemical/physical
haracterization of the product were achieved. These studies were
ainly focussed on process improvement and the detection of pro-

ess occurrences (e.g., physical state transformations) over time.
owever, and since freeze-drying is a batch wise process, also the
atch-to-batch variation has to be addressed. The differentiation
etween good and bad batches in the early process phase is a
ajor concern in the pharmaceutical industry since batch-to-batch

ariability can be unpredictable [13]. The unpredictability of batch
ariation can lead to quality problems in the final product (e.g.,
ariability in residual moisture content).

The aim of this study was not to focus on the critical freeze-
rying process aspects which can be detected using in-line Raman
pectroscopy, as this was done previously [9,12]. The objective
f this work is to show how freeze-drying process fingerprints
btained by continuous in-line Raman measurements can be used
o model reference freeze-drying processes (i.e., development of
atch models) allowing to evaluate in real-time whether future
ew batches are proceeding as the desired reference processes. A
% (w/v) d-mannitol solution was used as model to freeze-dry [14].

Multi-way models have been recognized as useful tools for mon-
toring batch data since they improve the process understanding
nd summarize the process behaviour in a batch wise manner.
ulti-way principal component analysis (MPCA) and multi-way

artial least squares (MPLS) were used to monitor batch wise pro-
esses, such as for example, fluid bed granulation [13,15]. Other
ulti-way methods such as parallel factor analysis (PARAFAC) and

ucker 3 were also used to monitor batches processes, such as
heat growing experiments using NIRS and polymerization pro-

esses [16,17]. In this study PLS and PARAFAC were the employed
atch modelling strategies. In this particular case, PLS and not MPLS
as used in the work. The data was unfolded and regular PLS was
erformed on the data, it is important to refer that regular PLS and
PLS algorithms are quite distinct [18].
A set of nominal batches obtained in normal operational condi-

ions (NOC) were used to develop the batch (calibration) models.
ew batches were projected onto these models to detect any devi-
tion from normal batch trajectories.

.1. Data analysis

The data obtained from the freeze-drying processes were orga-
ized in a three-way array X (I × J × K) with I batches, J variables
number of spectral variables) and K time points. The PLS was
erformed using SIMCA P+ 12.01 (Umetrics AB, Umeå, Sweden).
ARAFAC modelling was performed using PLS toolbox version 3.5
n Matlab, version 6.5 release 13 (MathWorks, Natick, MA, USA).

.2. PLS

To develop the PLS model, unfolding of the three-way array was
one preserving the variable direction, creating a new mode com-
ining the batch and time mode (M =IK). The row m of the matrix
has the spectrum corresponding to time point k for the batch i.

he dependent variable vector, Y, used for the partial least squares
PLS) regression, has a length equal to M and represent batch dura-
ion. By performing PLS regression using time as the dependent
ariable, the individual observations can be evaluated over time
nd batch maturity can be predicted. Moreover, by preserving the

ariable direction, the typical tendency of a batch being operated
n NOC, can be followed. The number of PLS components was set
y cross-validation using the approach described by Eastment and
rzanowski [19]. To monitor new batches, and compare their tra-

ectory with the NOC batches, control charts are developed. After
ta 83 (2010) 130–138 131

PLS modelling, a score matrix is obtained (M × T), in which T is the
number of latent variables used to fit the PLS model. To create the
control charts, the scores matrices are rearranged to produce “T”
matrices, one for each latent variable from the PLS model. Row-
wise, each of those matrices have dimension (I × K). From each of
these matrices, a vector is estimated (1 × K) with a standard devi-
ation (�) for the corresponding latent variable over the K time
points. The control limits are set in as ±3 × �. The essence of this re-
ordering principle is that, for each component of the PLS model, an
average trajectory with upper and lower control limits is obtained.
When projecting the new batches into the model the normal devel-
opment of these batches can be followed, as well as any deviation
from it.

Another control chart is the residuals chart showing the unmod-
elled variation, for each batch. A good batch should evolve in the
same way as the reference batches and be below a critical value
set at +3 × �, in which the standard deviation is calculated for the
average of the residuals from the calibration batches [20].

1.3. PARAFAC

PARAFAC is a method for modelling three-way or higher order
data. PARAFAC is a decomposition method that can be compared
to the bilinear principal component analysis (PCA) [21]. In the case
of a three-way data set the decomposition is performed in three
components as can be seen in Eq. (1).

xijk =
∑

aif bjf ckf + eijk (1)

In Eq. (1), xijk is an element of the three-way array X; and eijk is
an element of the three-way E of residues. Three ways or modes (a,
b and c) are obtained with indices i = 1,. . ., I, j = 1,. . ., J, and k = 1,. . .,
K. These indices constitute the loading matrixes A, B and C. The
index f is the number of PARAFAC components. In matrix notation
the PARAFAC model can be written as,

Xk = ADkBT + Ek, k = 1, . . . , K (2)

where Dk is a diagonal matrix holding the k row of C in its diagonal.
The determination of the number of components is one of the

major difficulties of a PARAFAC model. Resampling techniques
such as cross-validation or residuals histograms are some of the
techniques that can be use to determine the number of PARAFAC
components. However, all of them have some disadvantages such
as heavy computations involved or the difficulty to determine with
assurance the optimum number of components. To overcome the
disadvantages, a single diagnostic analysis, called core consistency,
that gives clear differences for different models was created. The
core consistency is always less or equal to 100%, a good trilinear
model can be said to have a core consistency above 90%. Low val-
ues of core consistency indicates that elements outside of the super
diagonal are significantly different of zero, that the model is not
trilinear and a model such Tucker should be used [22].

After the calibration of the PARAFAC model, new batches can be
projected onto the model. However, only the loadings of mode 1 (in
this case the batch mode) are obtained for the new batches. This fact
creates a problem because; no indication on their behaviour over
time is obtained. The residuals statistics can be used to obtain a
limit, it can be concluded that the predicted batch had some kind
of problem during the process. Nonetheless, no information can
be retrieved regarding where in time the problem occurred. Batch
control charts can be constructed using the Hotellings and residuals
statistics by performing the following procedure [17].
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Table 1
Freeze-drying conditions for batches in normal operational conditions (calibration batches) and prediction batches 2–4.

Calibration batches Prediction batch 2 Prediction batches 3 and 4

Process phase Time (min) Shelf
temperature (◦C)

Pressure
(mb)

Time (min) Shelf
temperature (◦C)

Pressure
(mb)

Time (min) Shelf
temperature (◦C)

Pressure
(mbar)

Freezing 0 20 1000 0 20 1000 0 20 1000
5 2 1000 25 −5 1000 5 2 1000

25 −5 1000 85 −30 1000 25 −5 1000
85 −30 1000 145 −45 1000 65 −45 1000

145 −45 1000 205 −45 1000
Primary drying 165 −45 0.5 190 −45 0.5 215 −15 1

185 −20 0.5 210 −20 0.5 225 −15 1
785 −20 0.5 810 −20 0.5 975 −15 1

977 −15 1
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Secondary drying 845 40 0.5 870
1085 40 0.5 930

960

A number PARAFAC models were constructed by cutting the
batch duration in expanding time periods, like 0–K/n, 0–2K/n,. . .
,0–K time points, in which n is the number of time periods.
The prediction batches were projected onto each constructed
model.
For each model and for each prediction batches the Hotelling and
the residuals sum of squares values were determined.

Batch control charts can be constructed using the Hotelling and
he residuals statistics for the different models constructed and
etting as control limits the value correspondent to the 95% con-
dence level. The Hotelling statistic gives an indication on batch
ariation, or in other words, assesses the statistical significance of
he difference between batches. The residuals statistic is an indi-
ation how well each batch conforms to the model. Consequently,
hese parameters can be used as indicators of process consistency.

. Experimental

.1. Materials

d-Mannitol (further abbreviated as mannitol) is one of the most
sed excipients in pharmaceutical freeze-drying. It is generally
mployed as a bulking agent, crystallizing during lyophilisation,
ence providing structural support to the final product.

In this study, 5% (w/v) mannitol solutions (3 ml) were used as
odel for the freeze-drying process.

.2. Batches

To develop the batch models, six NOC batches were used (pro-
ess conditions in Table 1). The batch models were evaluated by
unning three additional batches having deviating operational con-
itions, (see Table 1 for process conditions). A NOC batch, not used

n the calibration set, was also used to evaluate the developed batch
odels.

.3. Process description
The equipment used was an Amsco FINN-AQUA GT4 (GEA, Köln,
ermany) freeze-drier. For Raman process monitoring, a Raman
robe was built into the freeze-drier chamber. The probe was
laced above a vial, hence allowing to monitor the formulation top
urface without contact between product and probe. The optical
ber cable of the Raman probe was connected through a gap made

n the freeze-drier chamber door [2,9,12].
25 0.5
25 0.5
40 0.5

2.4. Raman spectroscopy

A RamanRxn1 spectrometer (Kaiser Optical Systems, Ann Arbor,
MI) equipped with an air-cooled CCD detector (black-illuminated
deep depletion design) was used in combination with a fiber optic
non-contact probe to monitor the freeze-drying processes. As the
Raman probe was directly placed above the product to freeze dry,
the glass vial did not interfere with the Raman signal. The laser
wavelength was 785 nm (NIR diode laser). All spectra were col-
lected at a resolution of 4 cm−1 using a laser power of 400 mW. Data
collection and transfer were automated using the HoloGRAMSTM

data collection software. A spectrum was collected every 2 min
during lyophilisation with 30 s exposures.

3. Results and discussion

Two different Raman spectral regions were used to monitor the
freeze-drying processes. Ice produces a Raman signal in the region
between 150 cm−1 and 250 cm−1 while mannitol produces signals
between 1000 cm−1 and 1170 cm−1 [9]. Furthermore, the different
polymorphic forms of mannitol can be distinguished in this spectral
region. These two spectral regions were used together (in total 901
spectral variables) to develop the batch models. During the freez-
ing step, ice formation can be detected by the appearance of the
ice peak at 215 cm−1 (Fig. 1a). Shortly after the water solidification,
mannitol starts to crystallize (Fig. 1b). During primary drying, the
ice is sublimated. The disappearance of the peak at 215 cm−1 can be
seen during this process step (Fig. 1c). Furthermore, the peaks cor-
responding to mannitol do not show any visible changes, indicating
that no transformations related to mannitol occurred during pri-
mary drying (Fig. 1d). The temperature was raised for the secondary
drying step to remove the hydrate water (i.e., to convert manni-
tol hemi-hydrate to an anhydrous form [9]). The Raman signals
corresponding to mannitol hemi-hydrate disappear or decrease in
intensity and new Raman peaks corresponding to anhydrous man-
nitol (� form) appear at 1030 cm−1 and 1130 cm−1 (Fig. 1f).

Raman spectra were collected every 2 min to decrease the com-
putational effort, resulting in a total of 550 spectra per batch.
Consequently, the calibration data is arranged in a three-way array
X (I × J × K) of I = 6 batches, J = 901 spectral variables and K = 550
time points.

3.1. Batch modelling – PLS
The unfolding of the three-way array by preserving the variable
direction resulted in a matrix X (M × J) with M = 3300 (6 batches
with 550 time points) and J = 901. Before PLS analysis, the spec-
tra were pre-processed using standard normal variate (SNV) and
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Fig. 1. Raman spectra corresponding to the three process steps for the t

ean centred. A PLS model was developed and cross-validation
as performed, resulting in a two component model (cumulative

ariance of X of 0.89 (Table 2)). A three component model did not
ignificantly improved the explained variance (increase of 0.019).
onsequently, a two component model was chosen.

Analysing the PLS model loadings (Fig. 2) it can be seen the
pectral variations described by each PLS component. The loadings
orrespondent to the first component are related to the transforma-
ions occurred during the freezing and primary drying stages. The
ection of the loadings that correspond to the ice signal (Fig. 2a)
hows the variations that occurred in the band at 215 cm−1. Com-
aring Fig. 2b with Fig. 1a and d, is clear that the loadings describe
he mannitol transformations taking place during the freezing and
rimary drying stages. The loadings correspondent to the second
LS component (Fig. 2c and d) are related to the transformations

ccurred during the secondary drying. In the case of the ice sig-
al range (Fig. 2c), the main feature is the appearance of a band
t 240 cm−1 (Fig. 1e). The loadings correspondent to the mannitol
ransformation range (Fig. 2d) relate to the appearance and dis-
ppearance of bands during the secondary drying (polymorphic

able 2
LS results. A – PLS component, R2X – explained sum of squares, Q2 – the fraction
f the total variation that can be predicted by a component, as estimated by cross-
alidation.

A R2X R2X (cum) Q2 (cum)

1 0.702 0.702 0.472
2 0.185 0.886 0.604
3 0.019 0.906 0.704
died spectral ranges. (A) Ice signal range and (B) mannitol signal range.

transformation). The changes occurring during the process can also
be detected analysing the scores evolution over time (Fig. 3). Only
the scores of calibration batch 2 are depicted for visualization clar-
ity. The increase of the PLS 1 component scores after 102 min (I)
is related to the beginning of the water to ice conversion. Manni-
tol crystallization can be detected by the increase of the first PLS
component scores and the decrease of the second PLS component
scores at 122 min (II). The start of the primary drying (A) is not
followed by any significant changes in the scores. An increase of
the scores for both PLS components at 194 process minutes (III) is
attributed to ice sublimation during the primary drying. The begin-
ning of the secondary drying is accompanied by an increase of the
scores for both PLS components (B). The reason that the secondary
drying can be detected, opposed to the primary drying, is the sub-
stantial increase in the temperature (60 ◦C) in the secondary drying
stage. The polymorphic transformation between hemi-hydrate and
� mannitol at minute 1038 (IV) can be seen in the increase of the
second PLS component scores.

After development of the calibration model, the spectra from
the prediction batches were projected onto the model. To evaluate
these new batches, batch control charts based on the scores (Fig. 4)
and residuals (Fig. 5) from the calibration batches were constructed.
The scores from the PLS second component were chosen to con-
struct the control charts (Fig. 4) because they show that information

during freeze and primary stages as the first component scores,
but the information associated with the secondary drying is more
visible in the second component as can be seen in Figs. 2d and 3.

Prediction batch 1 was a nominal batch, i.e., a batch produced
under NOC. However, when its trajectory was compared to the
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Fig. 2. First and second PLS component loadings for the two stud

alibration batches trajectories, significant deviations could be
etected. In the score batch control chart (Fig. 4) prediction batch 1
s out of control (above the superior limit) until minute 86, indicat-
ng some problem in the process conditions or spectra acquisition
uring that time. Looking to the spectra of prediction batch 1
btained during the first 86 process minutes (not shown), some
bnormalities could be detected. Since the batch trajectory was

ig. 3. Evolution over time of the first and second PLS component scores for calibration
olymorphic transformation, (A) beginning of the primary drying and (B) beginning of th
ectral ranges. (A) Ice signal range and (B) mannitol signal range.

within the limits the rest of the process, it can be concluded that
the initial deviation was related with problems associated with the

spectra acquisition. The same conclusion can be drawn by analysing
the residuals control chart.

Prediction batches 2–4 were subjected to different process con-
ditions (Table 1). For prediction batch 2, the primary drying step
was longer compared to the NOC batches and the shelf temperature

batch 2. (I) Ice solidification, (II) mannitol crystallization, (III) ice sublimation, (IV)
e secondary drying.
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Fig. 4. Evolution over time of the predicted scores fo

uring the secondary drying stage was first set at 25 ◦C during the
rst 100 secondary drying minutes instead of 40 ◦C. In the score
ontrol chart, corresponding to the second PLS component (Fig. 4)
deviation occurred in the end of the process indicating the dif-

erence in behaviour of this batch during the secondary drying. In
he residuals control chart (Fig. 5) this batch also deviates from the

odel at the end of the process where the difference in process
onditions compared to the NOC batches is more significant.

Prediction batch 3 and 4, have very different process conditions
ompared to the reference batches (Table 1): the primary drying
tarts later, the set shelf temperature during primary drying is
igher and no secondary drying was done. It is expected that these

wo bathes are out of trajectory during the entire process time.
n fact, the score control charts (Fig. 4) show that the trajectory
s completely different. The residuals control chart (Fig. 5) shows
hat almost the complete trajectory of prediction batches 3 and 4
s above the imposed limit.

Fig. 5. Evolution over time of the normalized distance correspondent to the P
second PLS component – scores batch control chart.

3.2. Batch modelling – PARAFAC

To develop the PARAFAC calibration model, a three-way array
X (I × J × K) with I = 6 (number of batches), J = 901 (number of spec-
tral variables) and K = 550 (number of time points) was used. The
spectra were pre-processed using SNV and centred before PARAFAC
analysis. The number of PARAFAC components was chosen based
on the core consistency criterion. For a number of PARAFAC compo-
nents between 1 and 4 the core consistency and the percentage of
explained variance was determined (Table 3). A model with 3 com-
ponents was chosen with a core consistency value of 94.3% and an
explained variance of 44.0%.
The loadings from the third mode (time) of the PARAFAC model
can be seen as the average batch trajectory for the calibration
batches (Fig. 6). The changes occurring during the process can be
seen in the three component loadings. The water to ice conversion
around 100 min (I) followed by the mannitol crystallization (II) are

LS residuals for the prediction batches – residuals batch control chart.
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Table 3
Variance explained and core consistency for the four first PARAFAC components.

# PARAFAC components Variance explained (%) Core consistency

1 24.6 100
2 34.4 100
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expected to have a different behaviour, in particularly in the end

F
t

3 44.0 94.3
4 50.4 65.1

learly seen in the three component loadings. The ice sublimation
ccurring around minute 200 (III) can be seen in the first compo-
ent. The polymorphic transformation occurred at the end of the
rocess (IV) can be followed by an increase in the first component

oading and a decrease in the second component loading.
The beginning of the primary drying (A) stage can be seen in

he loadings of the first and second component. A decrease in the
hird component loading around 845 min (B) is an indication of the
eginning of the secondary drying.

The loadings for the second mode (spectral variables) and for
he three PARAFAC components are shown in Fig. 7. By comparing
he loadings with the spectra presented in Fig. 1 it can be con-
luded (as was the case of the PLS loadings) that they are related to
he spectral changes occurred during the three process stages. The
oadings correspondent to the first, second and third component are
ssociated with the freezing, primary and secondary drying stages,
espectively.

After the calibration model was developed, the four predic-
ion batches were projected onto the model. The residuals sum of
quares for the prediction batches (not shown) confirm that batches
and 4 are clearly different from the NOC ones. Batches 1 and 2 are
bove the 99% confidence limit but below the 95% confidence limit.

hese statistics provide an indication of problematic batches. How-
ver, no indication is given in which part of the process trajectory
he problem occurred. For this reason, the procedure explained in
ection 1.3 was done to get an indication on the process phases

ig. 6. PARAFAC model loadings for the third mode (time) for the three components. (I) Ic
ransformation, (A) beginning of primary drying, and (B) beginning of secondary drying.
a 83 (2010) 130–138

during which the problems occurred (Figs. 8 and 9). A total of 22
models were constructed with expanding time periods.

The Hotelling control chart (Fig. 8) shows prediction batch 1
with abnormal behaviour in the first 50 min of the process, which
is in accordance with what has already been explained in Section
3.1. However, the residuals (Fig. 9) indicate that this batch is above
the control limit until minute 350, and very near to the control
limit the rest of the process. Prediction batch 2 is always within
the control limit in the Hotelling control chart. Only the last model
for this batch is above the control limit in the residuals control
chart, indicating that the problem in this batch is in the end of the
process as was already discussed above (Section 3.1). Prediction
batches 3 and 4 are above the control limit for the first 150 min of
the process time according to the Hotelling chart. The plot regarding
the residual statistics shows that both batches have a residual value
higher than the imposed control limit.

3.3. Batch monitoring with PLS and PARAFAC

The two approaches used to create the batch models gave similar
results and conclusions. The conversion of water into ice, manni-
tol crystallization, ice sublimation at the surface and polymorphic
transformation (hydrate removal) were clearly detected by follow-
ing the scores over time for both methods (Figs. 3 and 6). Batch
control charts were constructed and used to evaluate new batches
running under normal and non-normal process conditions. Both
methods detected that prediction batch 1, thought to be a nom-
inal batch, deviated from the normal trajectory in the beginning
of the process (Figs. 4, 5, 8 and 9). Prediction batch 2 was sub-
jected to different process conditions (see Table 1). Hence, it was
of the process. The residuals batch control charts (Figs. 5 and 9)
showed a few deviations, particularly in the end of the process.
For prediction batch 3 and 4, both methods considered them out
of limit during the first 150 min (Figs. 4 and 8). The residuals

e solidification, (II) mannitol crystallization, (III) ice sublimation, (IV) polymorphic
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ig. 7. Loadings for the second PARAFAC mode (spectral variables) for the three co
ignal range.

ontrol charts for both methods (Figs. 5 and 9) supported these
onclusions.

The batch control charts only give information regarding a pro-
ess disturbance; no information is obtained about the cause of the
isturbances. A solution to this problem is the use of contribution
lots. By using such plots the contribution of each process variable
an be evaluated and control limits can be introduced in the con-
ribution plots. This procedure allows the unveiling of the process
ariables that show different behaviour compared with the NOC
atches [23]. The use of contribution plots is an easy concept when

ealing with few process variables, but with spectroscopic data,
he use and analysis of these plots is not straightforward. Firstly,
he number of variables is very high (wavelengths) and secondly,
hese variables are highly correlated. To construct contribution

ig. 8. Hotelling T2 statistics for the prediction batches as a function of the modelled
ime intervals for a PARAFAC model with 3 components.
Fig. 9. Residuals statistics for the prediction batches as a function of the modelled
time intervals for a PARAFAC model with 3 components.

plots with spectroscopic data an initial variable reduction should
be performed. This possibility is undoubtedly worth of exploration
in a future work.

4. Conclusions

The objective of this work is to show how freeze-drying process
fingerprints obtained by continuous in-line Raman measurements

can be used to model reference freeze-drying processes (i.e., devel-
opment of batch models) allowing to evaluate in real-time whether
future new batches are proceeding as the desired reference pro-
cesses. Two chemometric batch modelling approaches were used
and tested: PLS and PARAFAC. The main product transformations
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ccurring during the freeze-drying process can be successfully eval-
ated during the monitoring of new batches. The PLS and PARAFAC
ontrol charts were able to detect non-nominal batches and gave
imilar results for both methods. It can hence be concluded that PLS
nd PARAFAC perform equally well. However, the computational
ffort is less for PLS, compared to PARAFAC, which is important for
he real-time evaluation of new batches.

Future work can be performed in order to include contribution
lots in the process monitoring.
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